Abstract

In this article, a novel U-tapered hollow-core fiber (HCF) surface plasmon resonance (SPR) biosensor coated with PtS2 for early-stage gastric carcinoma (GC) diagnosis was demonstrated. The article proposed the first investigation to detect Interleukin-10 (IL10) and Interleukin-1β (IL1β) which were associated with the risk of developing gastric carcinoma, using optical fiber SPR technology. Herein, the sensitivity of sensor was effectively improved through a combination of tapered and U-shaped structures. Additionally, to further enhance the detection capability, two-dimensional material PtS2 was utilized to increase the surface electric field intensity of the sensor. Simultaneously, optimization of structural parameters such as taper ratio, bending diameters, and Au film thickness was conducted. Ultimately, the designed sensor achieved a remarkable sensitivity of 13210 nm/RIU within the refractive index (RI) range of 1.33–1.37. The sensor demonstrated exceptional performance, achieving sensitivities of 3.64 nm/(ng/ml) and 7.46 nm/(ng/ml) for the detection of IL10 and IL1β biomarkers, respectively, along with limit of detection (LOD) of 2.74 pg/ml and 1.33 pg/ml, and successfully detecting the presence of these biomarkers in the serum of gastric cancer patients. Overall, the proposed sensor exhibits significant potential in early gastric cancer detection and advances the application of optical fiber SPR sensors in trace biodetection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.