Abstract
AbstractIn recent years, the development of highly sensitive and selective electrochemical sensors has been a pivotal area of research, driven by the growing demand for environmental monitoring and industrial process control. Among various materials investigated for sensor applications, manganese oxide (MnO2) nanoparticles have garnered significant attention due to their excellent electrochemical properties, environmental friendliness, and natural abundance. Critical analyses of the synthesis of MnO2 using different techniques such as hydrothermal method, chemical precipitation, and sol–gel process which allows for the fine-tuning of particle size and morphology while enhancing the electrochemical sensing capabilities have been reviewed. The review also provides a comprehensive overview of the recent advancement evaluation of manganese oxide-based electrodes for detecting sulfonamides and other analytes in water across diverse matrices. This paper sets the stage for a comprehensive exploration of the synthesis methods and application areas of MnO2 nanoparticles in electrochemical sensors, highlighting their role in advancing sensor technology and their impact on various sectors. Graphical Abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.