This study evaluated the impact of different repair protocols on a composite resin substrate using distinct bonding agents submitted or not to artificial aging. Unopened sets of a single-step universal adhesive system (UA) and silane-coupling agents, a single-step pre-hydrolyzed (PH) or a two-step immediately hydrolyzed (IH), were used. Half of the sets were subjected to artificial aging being stored at 48°C for 30days, while the other half remained unaged. The composite resin substrates were prepared and aged in distilled water, sandblasted (Al2O3), and cleaned. Then the different repair protocols were applied according to the groups. UA was used without a previous silane layer, while PH and IH were applied followed by a single-step etch-and-rinse adhesive system. Adhesive systems were light-activated, and four composite resin cylinders were formed over the substrate. After 24h, the specimens were subjected to microshear bond strength (μSBS) test and failure mode analysis. The μSBS data were subjected to two-way ANOVA followed by Tukey HSD; Kruskal-Wallis analysis was used for failure mode distribution (α = 0.05). After aging the products, UA showed higher bond strength, while PH had significantly lower results, and IH showed no significant differences (p = 0.157). No significant differences were found for bond strength among the repair protocols when using non-aged products (p > 0.05). The protocols using UA and IH showed no significant differences between aged and non-aged bottles, whereas PH exhibited lower bond strength whencomparing aged and non-aged products. More cohesive failures were observed in the resin substrate for the IH groupwithout aging.