Traditional Simultaneous Localization and Mapping application in dynamic situations is constrained by static assumptions. However, the majority of well-known dynamic SLAM systems use deep learning to identify dynamic objects, which creates the issue of trade-offs between accuracy and real-time. To tackle this issue, this work suggests a unique dynamic semantics method(DYS-SLAM) for semantic simultaneous localization and mapping that strikes a trade-off between high accuracy and high real-time performance. We propose M-LK, an enhanced Lucas-Kanade(LK) optical flow method. This technique keeps the continuous motion and greyscale consistency assumptions from the original method while switching out the spatial consistency assumption for a motion consistency assumption, reducing sensitivity to image gradients to identify dynamic feature points and regions efficiently. In order to increase segmentation accuracy while maintaining real-time performance, we develop a segmentation refinement scheme that projects 3D point cloud segmentation results into 2D object detection zones. A dense semantic octree graph is built in the interim to expedite the high-level process. Compared to the four equivalent dynamic SLAM approaches, experiments on the publicly available TUM RGB-D dataset demonstrate that the DYS-SLAM method offers competitive localization accuracy and satisfactory real-time performance in both high and low-dynamic scenarios.
Read full abstract