Abstract

Real-time 3D reconstruction has been applied in many fields, calling for many ongoing efforts to improve the speed and accuracy of the used algorithms. Phase shifting profilometry based on the Lucas-Kanade optical flow method is a fast and highly precise method to construct and display the three-dimensional shape of objects. However, in this method, a dense optical flow calculation is required for the modulation image corresponding to the acquired deformed fringe pattern, which consumes a lot of time and affects the real-time performance of 3D reconstruction and display. Therefore, this paper proposes a dynamic 3D phase shifting profilometry based on a corner optical flow algorithm to mitigate this issue. Therein, the Harris corner algorithm is utilized to locate the feature points of the measured object, so that the optical flow needs to calculate for only the feature points which, greatly reduces the amount of calculation time. Both our experiments and simulations show that our method improves the efficiency of pixel matching by four times and 3D reconstruction by two times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.