AbstractWe propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.