We consider a continuous family of linear elliptic differential operators of arbitrary order over a smooth compact manifold with boundary. Assuming constant dimension of the spaces of inner solutions, we prove that the orthogonalized Calderón projections of the underlying family of elliptic operators form a continuous family of projections. Hence, its images (the Cauchy data spaces) form a continuous family of closed subspaces in the relevant Sobolev spaces. We use only elementary tools and classical results: basic manipulations of operator graphs and other closed subspaces in Banach spaces, elliptic regularity, Green's formula and trace theorems for Sobolev spaces, well-posed boundary conditions, duality of spaces and operators in Hilbert space, and the interpolation theorem for operators in Sobolev spaces.