Abstract
We study variations of the first nontrivial eigenvalue of the two-dimensional p-Laplace operator, p > 2, generated by measure preserving quasiconformal mappings. The study is based on the geometric theory of composition operators in Sobolev spaces and sharp embedding theorems. Using a sharp version of the reverse Holder inequality, we obtain a lower estimate for the first nontrivial eigenvalue in the case of Ahlfors type domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.