Green technologies such as solar photovoltaic systems and electric vehicles play a fundamental role in the global decarbonization effort. To enable their diffusion, electricity distribution networks need to be upgraded, which is a complex and expensive endeavor. However, utilities face budgetary constraints and seek to reduce planning uncertainty. Here, we utilize 7,527 real-world grid topologies and land cover data to develop a model for estimating conductor and capital investment needs for electrifying a specific area. Our work yields three main contributions: First, we demonstrate the important role of land cover data in power line planning. We show that, for medium and large networks, distinct methodologies are needed due to the significant impact of land cover, particularly buildings and roads. Second, we introduce a parsimonious model of power line length and identify the number of consumption points as the primary determinant of network investment costs. Third, we present a cost assessment model tailored for regulators and investors, offering valuable insights for network planning, policymaking, due diligence, and research. Our work highlights the importance of combining land cover data and operations research algorithms in distribution network planning and provides policymakers with a tool to ensure cost-efficient network expansion.
Read full abstract