Abstract
Purpose: The main purpose of this paper is to propose a methodological approach and a decision support tool, based on prescriptive analytics, to enable bulk ordering of spare parts for shipping companies operating fleets of vessels. The developed tool utilises machine learning and operations research algorithms, to forecast and optimize bulk spare parts orders needed to cover planned maintenance requirements on an annual basis and optimize the company’s purchasing decisions.Design/methodology/approach: The proposed approach consists of three discrete methodological steps, each one supported by a decision support tool based on clustering and machine learning algorithms. In the first step, clustering is applied in order to identify high interest items. Next, a forecasting tool is developed for estimating the expected needs of the fleet and to test whether the needed quantity is influenced by the source of purchase. Finally, the selected items are cost-effectively allocated to a group of vendors. The performance of the tool is assessed by running a simulation of a bulk order process on a mixed fleet totaling 75 vessels.Findings: The overall findings and approach are quite promising Indicatively, shifting demand planning focus to critical spares, via clustering, can reduce administrative workload. Furthermore, the proposed forecasting approach results in a Mean Absolute Percentage Error of 10% for specific components, with a potential for further reduction, as data availability increases. Finally, the cost optimizer can prescribe spare part acquisition scenarios that yield a 9% overall cost reduction over the span of two years.Originality/value: By adopting the proposed approach, shipping companies have the potential to produce meaningful results ranging from soft benefits, such as the rationalization of the workload of the purchasing department and its third party collaborators to hard, quantitative benefits, such as reducing the cost of the bulk ordering process, directly affecting a company’s bottom line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.