Abstract
Green technologies such as solar photovoltaic systems and electric vehicles play a fundamental role in the global decarbonization effort. To enable their diffusion, electricity distribution networks need to be upgraded, which is a complex and expensive endeavor. However, utilities face budgetary constraints and seek to reduce planning uncertainty. Here, we utilize 7,527 real-world grid topologies and land cover data to develop a model for estimating conductor and capital investment needs for electrifying a specific area. Our work yields three main contributions: First, we demonstrate the important role of land cover data in power line planning. We show that, for medium and large networks, distinct methodologies are needed due to the significant impact of land cover, particularly buildings and roads. Second, we introduce a parsimonious model of power line length and identify the number of consumption points as the primary determinant of network investment costs. Third, we present a cost assessment model tailored for regulators and investors, offering valuable insights for network planning, policymaking, due diligence, and research. Our work highlights the importance of combining land cover data and operations research algorithms in distribution network planning and provides policymakers with a tool to ensure cost-efficient network expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.