BACKGROUND CONTEXTEstablishing good screw-bone structural stability is conducive to reducing the risk of postoperative screw loosening. Screw insertion torque is an objective index for evaluating screw-bone structural stability. Therefore, accurate prediction of screw insertion torque can improve the preoperative evaluation of patients, optimize the surgical plan, and improve the surgical effect. At present, the correlation between different bone assessment methods and screw insertion torque is unclear. PURPOSEThe aim of this study was to evaluate the correlation between different bone assessment methods and screw insertion torque and to optimize the predictive performance of screw insertion torque through mathematical modeling combined with different radiology methods. DESIGNProspective cross-sectional study. PATIENT SAMPLESSeventy-seven patients with preoperatively available DXA, CT and MRI data who underwent spinal fixation surgeries between October 2022 and September 2023 and 357 sets of screw data were included in this analysis. OUTCOME MEASURESSpinal, vertebrae-specific and screw trajectory's BMD were measured preoperatively by different imaging modalities. Intraoperative screw insertion torque was measured using an electronic torque wrench. METHODSPearson linear correlation, scatter plots and univariate linear regression were used to evaluate the correlation between different bone evaluation methods and screw insertion torque. Different bone evaluation methods were fitted into the prediction model of screw torque and the related equations were obtained. RESULTSScrew insertion torque had the strongest positive correlation with the volumetric bone mineral density (vBMD) of the screw trajectory (Pedicle screw insertion torque (PSIT): R = 0.618, p<.001; Terminal screw insertion torque (TSIT): R = 0.735, p<.001). A weak negative correlation was found between the screw insertion torque and level specific vertebral bone quality (VBQ) (PSIT: R = -0.178, p=.001; TSIT: R = -0.147, p=.006). We also found that the PSIT was strongly correlated with the TSIT (R = 0.812, p<.001). CONCLUSIONSCompared to other bone quality assessment methods, screw trajectory vBMD may be better predict the magnitude of screw insertion torque. In addition, we further optimized preoperative assessments by constructing a mathematical model to better predict screw insertion torque. In conclusion, clinicians should select appropriate preoperative bone quality assessment methods, identify potential low-torque patients, optimize surgical plans, and ultimately improve screw insertion accuracy and reduce postoperative screw loosening rate.
Read full abstract