Swallowing physiology includes numerous biomechanical events including displacement of the hyoid bone, which is a crucial component of airway protection and opening of the proximal esophagus. The objective of this study was to evaluate the potential relations between the trajectory of hyoid bone movement and the risk of airway penetration and aspiration during a videofluoroscopic swallowing study. Two hundred sixty-five patients were involved in this study, producing a total of 1433 swallows of various volumes consisting of thin liquid, nectar-thick liquid, and solids during a fluoroscopic exam. The anterior and posterior landmarks of the body of the hyoid bone were manually marked in each frame of each fluoroscopic video. Generalized estimation equations were applied to evaluate the relationship between penetration–aspiration scores and mathematical features extracted from the hyoid bone trajectories, while also considering the influence of other independent variables such as age, bolus volume, and viscosity. Our results indicated that penetration–aspiration scores showed a significant relation to age. The maximum anterior (horizontal) displacement of the anterior hyoid bone landmark was significantly associated with the penetration–aspiration scores. Differences in the displacement of the hyoid bone are useful observations in airway protection.Article highlightsIn this work, the potential relations between the trajectory of hyoid bone movement and the risk of airway penetration and aspiration during a videofluoroscopic swallowing study were evaluated.We extracted features from the hyoid bone trajectories and applied generalized estimation equations to investigate their relationship to penetration–aspiration scales.The results showed that the maximum anterior (horizontal) displacement of the anterior hyoid bone landmark was significantly associated with the penetration–aspiration scales.
Read full abstract