A series of platinum(II) acetylide complexes containing p-phenylenevinylene and moieties end-capped with triphenylamine groups have been incorporated into poly(methyl methacrylate) (PMMA) monoliths for optical power limiting applications. The one- and two-photon photophysical properties were investigated and compared to the photophysical properties in THF. The absolute two-photon absorption cross-section values for the monolith samples were measured and are comparable to the values obtained in solution. In the PMMA monoliths, the complexes retained the important two-photon absorption and reverse saturable absorption properties necessary for optical power limiting via dual mode mechanism, and their strong nonlinear absorption property was demonstrated by the open-aperture Z-scan method. Photostability studies of the p-phenylenevinylene platinum(II) acetylide complexes showed two photodegradation processes: a trans-to-cis isomerization and a singlet-oxygen sensitized self-oxidative cleavage. The photostability of the least photostable complex TPV0 was increased upon incorporation into a PMMA matrix.