Abstract

Hybrid porphyrin tapes 3 and 4, consisting of a mixture of 3,5-di-tert-butylphenyl-substituted donor-type Zn(II)-porphyrins and pentafluorophenyl-substituted acceptor-type Zn(II)-porphyrins, were prepared by a synthetic route involving cross-condensation reaction of a Ni(II)-porphyrinyldipyrromethane and pentafluorophenyldipyrromethane with pentafluorobenzaldehyde followed by appropriate demetalation, remetalation, and oxidative ring-closure reaction. The Ni(II)-substituted porphyrin tapes 5 (Ni-Zn-Ni) and 6 (Ni-H(2)-Ni) were also prepared through similar routes. The hybrid porphyrin tapes 3 and 4 are more soluble and more stable than normal porphyrin tapes 1 and 2 consisting of only donor-type Zn(II)-porphyrins. The solid-state and crystal packing structures of 3, 4, and 5 were elucidated by single-crystal X-ray diffraction analysis. Singly meso-meso-linked hybrid porphyrin arrays 12 and 14 exhibit redox potentials that roughly correspond to each constituent porphyrin segments, while the redox potentials of the hybrid porphyrin tapes 3 and 4 are positively shifted as a whole. The two-photon absorption (TPA) values of 1-6 were measured by using a wavelength-scanning open aperture Z-scan method and found to be 1900, 21,000, 2200, 27,000, 24,000, and 26,000 GM, respectively. These results illustrate an important effect of elongation of π-electron conjugation for the enhancement of TPA values. The hybrid porphyrin tapes show slightly larger TPA values than the parent ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.