Investigating the temperature behavior of lithium-ion battery cells has become an important part of today’s research and development. The main reason for this is that the temperature profile of a battery cell changes during aging. By using Differential Thermal Voltammetry (DTV), new possibilities are opened up, especially since this diagnostic method is designed to work in operando by only requiring voltage and temperature readings. In this study, a batch of NMC-21700 cells were aged in calendar and cyclic manners. After a specified aging cycle was complete, a check-up measurement was performed. During this time, the cycler collected the electrical measuring values, while a negative temperature coefficient thermistor, which was located on the cell, was used to record the temperature fluctuations. The data were then evaluated by using the DTV analysis technique. By comparing the characteristic points of DTV, correlations between the changing curve characteristics and the capacity loss, and therefore the aging of the respective cell, were established. Based on these results, a simple model suitable for online State of Health (SoH) is derived and validated, showing an estimation accuracy of 1.1%.
Read full abstract