We look for solutions \begin{document}$ u\left( x,t\right) $\end{document} of the one-dimensional heat equation \begin{document}$ u_{t} = u_{xx} $\end{document} which are space-time periodic, i.e. they satisfy the property \begin{document}$ u\left( x+a,t+b\right) = u\left( x,t\right) $\end{document} for all \begin{document}$ \left( x,t\right) \in\left( -\infty,\infty\right) \times\left( -\infty,\infty\right), $\end{document} and derive their Fourier series expansions. Here \begin{document}$ a\geq0, b\geq 0 $\end{document} are two constants with \begin{document}$ a^{2}+b^{2}>0. $\end{document} For general equation of the form \begin{document}$ u_{t} = u_{xx}+Au_{x}+Bu, $\end{document} where \begin{document}$ A, B $\end{document} are two constants, we also have similar results. Moreover, we show that non-constant bounded periodic solution can occur only when \begin{document}$ B>0 $\end{document} and is given by a linear combination of \begin{document}$ \cos\left( \sqrt{B}\left( x+At\right) \right) $\end{document} and \begin{document}$ \sin\left( \sqrt{B}\left( x+At\right) \right). $\end{document}
Read full abstract