Abstract Reliable yield performance is important in cucumber because seed companies prefer to market cultivars adapted to multiple rather than single regions of the U.S. Also, growers benefit by using a cultivar that performs well in many environments. Future performance of cultivars is also important. The objectives of the study were to (i) evaluate the yield of cucumber genotypes over successive years and in different locations, and (ii) identify cucumber genotypes with high stability for yield. A diverse set of 22 pickling genotypes was evaluated over 3 years (1986, 1987 and 1988) and in 7 locations across the United States. Yield traits were evaluated using once-over harvest and counting the number of fruit that were marketable, culled or oversize. Total yield, marketable yield (total minus culled fruit), early yield (number of oversize fruit), percent culls and fruit per plant were calculated. Data were analyzed with SASGxE and RGxE programs using SAS and R programming languages, respectively. There were strong effects of environment(E) as well as genotype(G) xE interaction for all traits. Genotypes ‘Regal F1’, ‘Calypso F1’, ‘Carolina F1’, ‘Gy 3’, ‘Gy 14’ and ‘Fremont F1’ had high marketable yield and medium to high stability for all traits. There was an advantage of hybrids over inbreds for trait performance. Hybrids fell into a single cluster with large prediction intervals. Based on the stability statistics and divisive clusters, it appears possible to breed stable cucumber genotypes with high yield. The genotype with highest performance for marketable yield, greatest stability for yield, lowest 1-R2 ratio value (diverse and representative) were ‘Marbel F1’ and Gy 14.