MXenes are members of the rapidly expanding family of two-dimensional materials known for their electronic and magnetic properties and hold significant promise for advancements in electronics and spintronics technologies. In this study, we identified a stable MnCrNO2 MXene characterized by a band gap of 2.68 eV, a magnetic moment of 6μB, and a magnetic anisotropy energy of 78.6 μeV per transition metal atom. These properties were computed using density functional theory with an on-site Coulomb potential and HSE06 hybrid functional calculations. Manipulating the band gap and magnetic properties offers considerable advantages for tailoring MXenes for specific applications. Our investigation extended to exploring the property behaviors under biaxial strain, as well as the adsorption of Group-I and Group-II ions onto the newly discovered MXene. Our findings underscore a highly linear relationship between strain and band gap, supported by an impressive R2 score of 0.997 for the best-fit straight line. Moreover, we demonstrated the linear tunability of the material's magnetic anisotropy energy under biaxial strain, achieving an R2 score of 0.982. Adsorption of 2.2% Group-I and Group-II ions onto the MnCrNO2 MXene reveals the potential for a semiconductor-to-half-metal phase transition with K, Rb, Be, Mg, and Ca ions. These results provide pathways for leveraging MXenes for the development of next-generation electronic and spintronic devices.
Read full abstract