Polaritons, hybrid light and matter waves, offer a platform for subwavelength on-chip light manipulation. Recent works on planar refraction and focusing of polaritons all rely on heterogeneous components with different refractive indices. A fundamental question, thus, arises whether it is possible to configure two-dimensional monolithic polariton lenses based on a single medium. Here, we design and fabricate a type of monolithic polariton lens by directly sculpting an individual hyperbolic van der Waals crystal. The in-plane polariton focusing through sculptured step-terraces is triggered by geometry-induced symmetry breaking of momentum matching in polariton refractions. We show that the monolithic polariton lenses can be robustly tuned by the rise of van der Waals terraces and their curvatures, achieving a subwavelength focusing resolution down to 10% of the free-space light wavelength. Fusing with transformation optics, monolithic polariton lenses with gradient effective refractive indices, such as Luneburg lenses and Maxwell's fisheye lenses, are expected by sculpting polaritonic structures with gradually varied depths. Our results bear potential in planar subwavelength lenses, integrated optical circuits, and photonic chips.
Read full abstract