Abstract

A cost-effective method to achieve a 2-3 µm wavelength light source on silicon represents a major challenge. In this study, we have developed a novel approach that combines an epitaxial growth and the ion-slicing technique. A 2.1 µm wavelength laser on a wafer-scale heterogeneous integrated InP/SiO2/Si (InPOI) substrate fabricated by ion-slicing technique was achieved by epitaxial growth. The performance of the lasers on the InPOI are comparable with the InP, where the threshold current density (Jth) was 1.3 kA/cm2 at 283 K when operated under continuous wave (CW) mode. The high thermal conductivity of Si resulted in improved high-temperature laser performance on the InPOI. The proposed method offers a novel means of integrating an on-chip light source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.