We have developed an on-chip single-cell microcultivation assay as a means of simultaneously observing the growth and movement of single bacterial cells during long-term cultivation. This assay enables the direct observation of single cells captured in microchambers fabricated on thin glass slides and having semipermeable membrane lids, in which the cells can swim within the space without escape for the long periods. Using this system, the relationship between the cell cycle and the tendency of movement was observed and it was found that the mean free path length did not change during the cell cycle, and that the growth and the swimming were not synchronized. The result indicates that the ability of movement of the cells was independent of the cell cycle.
Read full abstract