High-abundance serum proteins, mostly modified by N-glycans, are usually depleted from human sera to achieve in-depth analyses of serum proteome and sub-proteomes. In this study, we show that these high-abundance glycoproteins (HAGPs) can be used as valuable standard glycopeptide resources, as long as the structural features of their glycans have been well defined at the glycosite-specific level. By directly analyzing intact glycopeptides enriched from serum, we identified 1322 unique glycopeptides at 48 N-glycosites from the top 12 HAGPs (19 subclasses). These HAGPs could be further classified into four major groups based on the structural features of their attached N-glycans. Immunoglobins including IGHG1/2/3/4, IGHA1/2 and IGHM were mostly modified by core fucosylated and bisected N-glycans with rarely sialic acids. Alpha-1-acid glycoproteins (ORM1/2) and haptoglobins (HP) were mainly modified by tri-and tetra-antennary (40 %) N-glycans with antenna-fucoses and sialic acids. Complement components C3 and C4A/B were highly modified by oligo-mannose glycans. The other HAGPs including SERPINA1, A2M, TF, FGB/G and APOB mainly contain bi-antennary complex glycans with the common core structure and (sialyl-) LacNAc branch structures. These HAGPs are easily detected by LC-MS analysis and therefore could be used as standard glycopeptides for glycoproteomic methodology studies as well as possible clinical utilities.