Abstract

Carbohydrate binding proteins (CBPs) are attractive targets in medicine and biology. Multivalency, with several glycans binding to several binding pockets in the CBP, is important for high-affinity interactions. Herein, we describe a novel platform for design of multivalent carbohydrate cluster ligands by directed evolution, in which serum-stable 2'-fluoro modified RNA (F-RNA) backbones evolve to present the glycan in optimal clusters. We have validated this method by the selection of oligomannose (Man9) glycan clusters from a sequence pool of ∼1013 that bind to broadly neutralizing HIV antibody 2G12 with 13 to 36 nM affinities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call