This article deals with the numerical simulation of an oil–air multiphase flow inside the thrust bearing of a high-performance mixed-flow pump, including both the lubrication effects and the cooling of the oil by the water-cooling system based on spiral piping. The bearing is lubricated by the oil bath method with partially submersed rollers. Very complex full 3D geometry is modelled in all details, but for modelling purposes, the impacts of some model simplifications on the results are tested. The comprehensive CFD analysis is based on fully transient simulations, taking into account the different rotational speeds and different coordinate systems of all rotating components. The oil distribution on the bearing ring and roller walls as well as the oil temperature are discussed in detail. The results demonstrate that the designed cooling system is efficient in keeping the bearing and oil temperatures at safe values to guarantee bearing rating life even at extreme climatic conditions. The simulations present a comprehensive way of solving complex problems of the bearing and its cooling system applicable to engineering practice. The results of the simulations indicate also that the complexity of the computational domain and bearing clearances have a significant impact on the obtained results.
Read full abstract