Damping plays an important role in the design of offshore wind turbine structures. The hysteretic damping of the seabed soil represents the energy dissipation caused by the soil-particle interaction and the nonlinear behavior of the soil under cyclic loading. However, the effect of sand damping on the lateral response of the monopile foundation of an offshore wind turbine is still unclear. In this paper, the effect of soil hysteretic damping on the lateral dynamic response of a monopile foundation in a sandy seabed is investigated using a subplastic soil constitutive model. The constitutive model response at the foundation level is verified by comparing the monotonic and cyclic responses of the monopile with the results of the 1g model test. The results show that when soil hysteretic damping is present in the monopile-soil system, the energy dissipation in the soil reduces the stress accumulation in the soil, resulting in a reduction in the bending moment and horizontal displacement of the monopile, compared with the case without soil hysteretic damping. The results are crucial for optimizing the monolithic design of offshore wind turbine structures.
Read full abstract