Abstract
Topology optimization (TO) has experienced substantial progress in both scholarly research and practical engineering applications. Recent years have witnessed extensive research on TO approaches incorporating the fail-safe concept, with a particular emphasis on potential failures. This paper proposes a TO methodology on the offshore wind turbine (OWT) jacket structure, focusing on the unexpected failure modes. The initial step involves constructing the formulation for maximum-minimization TO. A series of optimized structures can be generated by varying the sizes of individual damage populations and overall failure zones. A 5 MW OWT and jacket structure have been selected as the reference model. The external loads acting on the jacket structure are determined by given environmental conditions, as assessed using the DNV Bladed ™ package. The feasibility of an optimized structure is evaluated by comparing its static behaviors, such as maximum displacement and von Mises stress, to those of the reference structure. The investigation focuses on the fundamental frequencies of the optimized structure under various damage populations. The discovery demonstrates the superiority of the suggested methodology in the case of a potential failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.