Ovoids of the parabolic quadric Q(6, q) of PG(6,q)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{PG}(6,q)$$\\end{document} have been largely studied in the last 40 years. They can only occur if q is an odd prime power and there are two known families of ovoids of Q(6, q), the Thas-Kantor ovoids and the Ree-Tits ovoids, both for q a power of 3. It is well known that to any ovoid of Q(6, q) two polynomials f1(X,Y,Z)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_1(X,Y,Z)$$\\end{document}, f2(X,Y,Z)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f_2(X,Y,Z)$$\\end{document} can be associated. In this paper we classify ovoids of Q(6, q) with max{deg(f1),deg(f2)}<(16.3q)313-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\max \\{\\deg (f_1),\\deg (f_2)\\}<(\\frac{1}{6.3}q)^{\\frac{3}{13}}-1$$\\end{document}.