Abstract

AbstractLet q be an odd prime power and suppose that $a,b\in \mathbb {F}_q$ are such that $ab$ and $(1{-}a)(1{-}b)$ are nonzero squares. Let $Q_{a,b} = (\mathbb {F}_q,*)$ be the quasigroup in which the operation is defined by $u*v=u+a(v{-}u)$ if $v-u$ is a square, and $u*v=u+b(v{-}u)$ if $v-u$ is a nonsquare. This quasigroup is called maximally nonassociative if it satisfies $x*(y*z) = (x*y)*z \Leftrightarrow x=y=z$ . Denote by $\sigma (q)$ the number of $(a,b)$ for which $Q_{a,b}$ is maximally nonassociative. We show that there exist constants $\alpha \approx 0.029\,08$ and $\beta \approx 0.012\,59$ such that if $q\equiv 1 \bmod 4$ , then $\lim \sigma (q)/q^2 = \alpha $ , and if $q \equiv 3 \bmod 4$ , then $\lim \sigma (q)/q^2 = \beta $ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.