Abstract

AbstractA Latin square of order is an matrix of symbols, such that each symbol occurs exactly once in each row and column. For an odd prime power let denote the finite field of order . A quadratic Latin square is a Latin square defined by for some such that and are quadratic residues in . Quadratic Latin squares have previously been used to construct perfect 1‐factorisations, mutually orthogonal Latin squares and atomic Latin squares. We first characterise quadratic Latin squares which are devoid of Latin subsquares. Let be a graph and a 1‐factorisation of . If the union of every pair of 1‐factors in induces a Hamiltonian cycle in then is called perfect, and if there is no pair of 1‐factors in which induce a Hamiltonian cycle in then is called antiperfect. We use quadratic Latin squares to construct new examples of antiperfect 1‐factorisations of complete graphs and complete bipartite graphs. We also demonstrate that for each odd prime , there are only finitely many orders , which are powers of , such that quadratic Latin squares of order could be used to construct perfect 1‐factorisations of complete graphs or complete bipartite graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call