Background. The first-generation trk inhibitors, larotrectinib and entrectinib, were approved by the u.s. Food and drug administration (Fda) for the treatment of advanced solid tumors harboring NTRK gene fusions in November 2018 and in august 2019, respectively. The purpose of the study was to present upto-date data on the structure and functions of ntrk genes, the frequency of occurrence of rearrangements with their participation, the consequences of their occurrence at the cellular level, methods of detecting such rearrangements, as well as targeted drugs used in the presence of chimeric NTRK genes. Material and methods. A systemic literature search was conducted in pubmed ncbi, Web of science, scopus databases. Results. The products of NTRK genes are receptors for neurotrophins, and their high expression is normally observed only in a narrow range of tissue types. Intrachromosomal or interchromosomal rearrangements lead to a significant increase in the level of expression of the chimeric gene regulated by the strong promoter of the partner gene. The high transcriptional activity of such a gene, along with the constant activation of the kinase activity of the protein product, leads to the activation of metabolic pathways responsible for cell escape from apoptosis and disruption of the regulation of the cell cycle. The occurrence of chimeric NTRK genes varies between different types of tumors, with the highest (up to 90 %) in rare cancers (secretory carcinoma of the breast, secretory carcinoma of the salivary glands, congenital mesoblastic nephroma, children’s fibrosarcoma). Larotrectinib and entrectinib are highly effective targeted drugs in suppressing the growth of a tumor carrying NTRK rearrangements, regardless of the type of tumor. In this regard, the introduction of new high-precision methods for the detection of chimeric NTRK genes, as well as the study of the mechanisms of the development of resistance with the assumption of ways to overcome it, seems relevant. Conclusion. Rearrangements of NTRK genes are quite common in various types of oncology and are an effective target for modern targeted drugs.