Artificial intelligence (AI) is revolutionizing the field of energy efficiency optimization by enabling advanced analysis and control of energy systems. This review provides a concise overview of the role of AI in enhancing energy efficiency. AI technologies, such as machine learning and neural networks, are being increasingly applied to optimize energy consumption in various sectors, including buildings, transportation, and industrial processes. These technologies analyze vast amounts of data to identify patterns and trends, enabling more precise control of energy systems and the prediction of energy demand. One of the key advantages of AI in energy efficiency optimization is its ability to adapt and learn from data, leading to continuous improvement in energy-saving strategies. AI algorithms can optimize energy consumption based on factors such as weather conditions, occupancy patterns, and energy prices, resulting in significant cost savings and environmental benefits. Furthermore, AI enables the integration of renewable energy sources into existing energy systems by predicting renewable energy generation and optimizing its use. This integration helps reduce reliance on fossil fuels and mitigates greenhouse gas emissions, contributing to a more sustainable energy future. However, the implementation of AI in energy efficiency optimization is not without challenges. These include data privacy concerns, the need for specialized skills to develop and deploy AI solutions, and the complexity of integrating AI systems into existing energy infrastructure. Addressing these challenges will be crucial for realizing the full potential of AI in energy efficiency optimization. In conclusion, AI holds great promise for enhancing energy efficiency by enabling more intelligent control and optimization of energy systems. By leveraging AI technologies, organizations can achieve significant energy savings, reduce costs, and contribute to a more sustainable and resilient energy future.
 Keywords: Role, AI, Energy, Efficiency, Optimization.