Ischemia-reperfusion (I/R) injury has weakened the effects of available treatment options for ischemic stroke. Although conditioned medium obtained from human amniotic mesenchymal stem cells (hAMSC-CM) has been reported to exert protective effect against stroke, detailed knowledge about its possible molecular mechanisms is not still completely available. The present study was designed to investigate whether hAMSC-CM can modulate FoxO1 and Wnt/β-catenin signaling pathway after ischemic stroke to create neuroprotective effects.Middle cerebral artery occlusion (MCAO) model with male Wistar rats was used to evaluate the effects of hAMSC-CM on activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and apoptotic cell death. The results demonstrated that induction of MCAO significantly reduced activities of FoxO1, Wnt/β-catenin signaling pathway, and endogenous antioxidant system and enhanced apoptotic cell death (P < 0.05). In addition, treatment by hAMSC-CM immediately after cerebral reperfusion resulted in significantly reduced infarct size and increased activities of FoxO1, Wnt/β-catenin signaling pathway, and restoring endogenous antioxidant system and suppressing apoptotic cell death (P < 0.05). Likewise, increased activity of Wnt/β-catenin signaling pathway resulted in suppressing the neuroinflammation by inhibiting the expression of TNF-α and increasing the expression of IL-10. These findings demonstrate that hAMSC-CM can be considered as an excellent candidate in the treatment of acute ischemic stroke in clinical routine.
Read full abstract