Catalytic ozone (O3) decomposition is a promising technology for curbing indoor O3 pollution, whereas its application is limited by the stability and moisture resistance of heterogeneous catalysts. Ag-Hollandite is a capable solution, but its facile synthesis still lacks systematic investigation. In this study, Ag-Hollandite catalysts were prepared using AgMnO4 as the precursor by reflux (AMO-Re), hydrothermal (AMO-HT), and homogeneous (AMO-HR) methods, respectively. The as-prepared samples showed excellent stability under moisture conditions, with the optimal one maintaining an O3 conversion rate of 99.19 % after 100 h. In the characterization results, Ramsdellite (R-MnO2) was identified as an intermediate species in the synthesis. AMO-HR exhibits higher activity due to enhanced active site exposure and weakened adsorption towards *OO species, while reduced surface hydroxyl content was a crucial factor for moisture resistance. This study aims to contribute insights for preparing catalysts by a facile method.
Read full abstract