Abstract

A novel CeO2 doped high silica ZSM-5(CeO2@HSZSM-5) composite was originally fabricated via ammonia precipitation for the catalytic ozonation of sulfamethoxazole (SMX). Physicochemical properties have been investigated through electron microscope, Raman spectroscopy, X-ray photoelectron spectroscopy, etc. The prepared nanometer CeO2@HSZSM-5 had a much higher specific surface (348–395 m2/g), a finer crystallite size (8.2–33.5 nm) and superior stability. Temperature-programmed desorption and reduction analysis revealed that the formed CeO2 nanoparticles on the surface of CeO2@HSZSM-5 could improve the reducibility of surface-capping oxygen, induce more oxygen vacancies and promote oxygen migration. CeO2@HSZSM-5 exhibited excellent catalytic performance for SMX mineralization in the pH range of environmental waters. The great enhancement of CeO2@HSZSM-5 catalytic activity was ascribed to the conversion of O3 into active oxygen involved in SMX mineralization, including .OH, O2.– and 1O2. This work provides a reference for the removal of pollutants by zeolite supported Ce catalytic ozonation process in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call