The influence of metal cations (M = Cu+, Ca2+ and Cu2+) coordinated to the N7 of guanine on hydrogen bonding and aromaticity of the guanine–cytosine base pair has been analysed with the help of delocalization indices using the B3LYP functional. Our analysis shows that the strengthening of the N1···N3 and N2···O2 hydrogen bonds and the weakening of the O6···N4 hydrogen bond is mainly caused by the modification of donor–acceptor (covalent) interactions rather than to a significant change of electrostatic interactions. On the other hand, the increase of the aromaticity of the guanine and cytosine six-membered rings because of the interaction with Cu+ and Ca2+ is attributed to the strengthening of hydrogen bonding in the guanine–cytosine pair. The observed reduction of aromaticity in the five- and six-membered rings of guanine due to ionization or interaction with Cu2+ is caused by the oxidation process that removes a π electron disrupting the π electron distribution.
Read full abstract