Abstract
Uracil phosphoribosyltransferase (UPRTase) catalyzes the transfer of a ribosyl phosphate group from alpha-D-5-phosphoribosyl-1-pyrophosphate to the N1 nitrogen of uracil. The UPRTase from the opportunistic pathogen Toxoplasma gondii is a rational target for antiparasitic drug design. To aid in structure-based drug design studies against toxoplasmosis, the crystal structures of the T.gondii apo UPRTase (1.93 A resolution), the UPRTase bound to its substrate, uracil (2.2 A resolution), its product, UMP (2.5 A resolution), and the prodrug, 5-fluorouracil (2.3 A resolution), have been determined. These structures reveal that UPRTase recognizes uracil through polypeptide backbone hydrogen bonds to the uracil exocyclic O2 and endocyclic N3 atoms and a backbone-water-exocyclic O4 oxygen hydrogen bond. This stereochemical arrangement and the architecture of the uracil-binding pocket reveal why cytosine and pyrimidines with exocyclic substituents at ring position 5 larger than fluorine, including thymine, cannot bind to the enzyme. Strikingly, the T. gondii UPRTase contains a 22 residue insertion within the conserved PRTase fold that forms an extended antiparallel beta-arm. Leu92, at the tip of this arm, functions to cap the active site of its dimer mate, thereby inhibiting the escape of the substrate-binding water molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.