The exponential growth of energy demand worldwide, the depletion of oil reserves and the severe pollutants problems caused by industry that favors greenhouse effect, evidence the need to increase the supply of oils for biodiesel production. This sets a new overview for studying non-edible oilseeds species. An alternative is barbados nut or piñón (Jatropha curcas) crop, perennial bush that is native from Mexico and Central America, grows in most of tropical countries, and it is considered like one of the non-conventional oilseed crops with great expectations for obtaining biodiesel.The barbados nut (Jatropha curcas) seeds have an outstanding characteristic: their high oil content allows converting it to liquid biofuel, and also the shell can be transformed into biogas and biofertilizers. Jatropha curcas is a green option to reforest degraded soils and to control erosion, as well as an option to diversify agricultural systems (crop rotation). On the other hand, in several scientific studies it is reported a wide variation in yields, due lack of study of plant's genetics, the agronomic handling, as well to the misunderstanding that exists in some countries in the field of zones with best agroecological ability to set the crop. The agroecological zoning (zae) refers to a división of land surface and weather into smaller units, that have similar characteristics related to its ability, potential yield and environmental impact.The aim of this paper is to define the zones with different agroecological abilities to set the Jatropha curcas crop, in the state of Tabasco. In order to accomplish this, four types of abilities were defined: optimal, proper, marginal by thermal or water deficit, and marginal by thermal or water excess. The agroecological zoning (zae) proposed in this paper defines zones based on combinations of soil, physiography weather characteristics of temperature, rainfall and growth rate.An agroclimatic zoning is a zone with characteristics related to weather and crop systems, for our study the database of eric iii (Extractor Rápido de Información Climatológica) was used, reporting for Tabasco a total of 93 meteorological stations. Nevertheless, only 35 stations were selected, since the other had inconsistencies in their information. From those 35 stations, a weather database was created, considering the information of historical series in a daily basis, like minimum and máximum temperatures, rainfall and evaporation (1950 – 2003 period).The edaphoclimatic zoning consisted in assessing the soil resource based in the units and subdivisions of soil from fao/unesco system. In order to fulfill the zoning, cartographic data of soils subunits was consolida-ted, including texture, slope, soil depth, and its fertility, whose edaphological properties were compared to fao's Jatropha curcas crop requirements and optimal level was assigned.The tool used for cartography elaboration was ArcMap gis Software, which consists of computer mapping system that relates locations with agroclimatic information equal to Jatropha curcas crop requirements, which were defined like áreas with ability, and according to this maps were prepared at a scale of 1:250 000 of every climatic element. The interpolation for the calculation of isolines was made by Kriging method, embedded within ArcMap software, which ease the handling and superposition of theme information layers of weather and soil.The yearly average analysis of temperature corroborated that whole Tabasco state has optimal ability and the rainfall analysis showed a surface of 2 229 631 ha with optimal ability. About soil resource there were detected 37 subunits of soil with optimal ability, adding a surface of 945 462 ha. After analyzing the maps between optimal characteristic abilities (temperature, rainfall and growth rate) and edaphological, there were detected 833 181 ha with optmial agroecological ability, therefore in the state of Tabasco is feasible the crop of this oilseed to produce biofuels.
Read full abstract