Rotenone, a naturally occurring toxin, has been used to induce sporadic Parkinson's disease (PD) in Drosophila melanogaster for decades. However, the age of flies varies considerably between studies in this model. To investigate the impact of age on the rotenone-induced PD model, we collected male flies at the age of 1, 5, 7, and 10 days post-eclosion, respectively. Then, flies were immediately exposed to a feeding medium supplemented with 250 μM rotenone for seven days. The motor ability of Drosophila was detected by negative geotaxis assay, and the number of dopamine (DA) neurons and tyrosine hydroxylase (TH) expression levels were evaluated. The results showed that both the motor deficits and mortality increased with age. The flies older than five days showed typical PD features, including the loss of DA neurons, decreased TH expression levels, and decreased locomotive ability. However, 1-day-old flies displayed an unstable motor deficit and little TH expression changes after seven days of rotenone exposure. Lastly, after 7 days of exposure to rotenone, the death rate of flies rapidly increased with increasing starting age. The death rates of 1-, 5-, 7-, and 10-days old flies were 10.0%, 22.8%, 41.5%, and 50.4%, respectively. The findings of this study suggest that age is a crucial factor impacting the Drosophila PD model. This information provides a reference for the age selection to use this model for future studies.