ConspectusTransition metal complexes featuring an M═NR bond have received great attention as critical intermediates in the synthesis of nitrogen-containing compounds. In general, the properties of the imido ligand in these complexes are dependent on the nature of the metal center. Thus, the imido ligand tends to be nucleophilic in early transition metal complexes and electrophilic in late transition metal complexes. Nonetheless, the supporting ligand can have a dramatic effect on its reactivity. For example, there are sporadic examples of nucleophilic late transition metal imido complexes, often based on strongly donating supporting ligands. Building on these earlier works, in this Article, we show that the imido ligand in a low-coordinate high-spin bis(carbene)borate Fe(II) complex is able to access previously unknown reaction pathways, ultimately leading to new catalytic transformations. We first focus on the synthesis, characterization, and stoichiometric reactivity of a highly nucleophilic Fe(II) imido complex. The entry point for this system is the intermediate-spin three-coordinate Fe(III) imido complex, which is generated from the reaction of an Fe(I) synthon with an organic azide. Alkali metal reduction leads to a series of M+ (M = Li, Na, K) coordinated and charge-separated (M = K(18-C-6)) high-spin Fe(II) imido complexes, all of which have been isolated and fully characterized. Combined with the electronic structure calculations, these results reveal that the alkali ions moderately polarize the Fe═N bond according to K+ ≈ Na+ < Li+. As a result, the basicity of the imido ligand increases from the charged separated complex to K+, Na+, and Li+ coordinated complexes, as validated by intermolecular proton transfer equilibria. The impact of the counterion on imido ligand reactivity is demonstrated through protonation, alkylation, and hydrogen atom abstraction reactions. The counterion also directs the outcome of [2 + 2] reactions with benzophenone, where alkali coordination facilitates double bond metathesis. Building from here, we describe how the unusual nucleophilicity of the high-spin Fe(II) imido complex revealed in stoichiometric reactions can be extended to new catalytic transformations. For example, a [2 + 2] cycloaddition reaction serves as the basis for the catalytic guanylation of carbodiimides under mild conditions. More interestingly, this complex also exhibits the first ene-like reactivity of an M═NR bond in reactions with alkynes, nitriles, and alkenes. These transformations form the basis of catalytic alkyne and nitrile α-deuteration and pKa-dictated alkene transposition reactions, respectively. Mechanistic studies reveal the critical role of metal-ligand cooperativity in facilitating these catalytic transformations and suggest the new avenues for transition metal imido complexes in catalysis that extend beyond classical nitrene transfer chemistry.
Read full abstract