Abstract

The recent revelation of hidden-borane catalysis has revolutionized the field of catalytic hydroboration in organic synthesis. Many nucleophilic reaction promoters, previously believed to be the catalysts, in fact primarily facilitated the formation of borane (BH3), which subsequently acted as the true catalyst. This revelation prompted us to explore the untapped potential of these unexpected transformations, with a view to simplify hydroboration using more cost-effective and environmentally friendly nucleophilic precatalysts. Via computational studies, we were able to identify that water can actually undertake that role. Herein, we report a study on the simple hydroboration of nitriles, a notoriously challenging yet synthetically valuable class of substrates, using nothing more than moisture as an activating agent. This moisture-assisted nitrile hydroboration process can seamlessly integrate with a range of downstream transformations in a one-pot fashion to produce valuable N-containing products such as symmetrical imines, thioureas, and bis(alcohol)amines as well as N-heterocycles such as pyrroles, pyridines, pyridinium salts, 2-iminothiazolines, and carbazoles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call