In order to maximize the therapeutic effect and and minimize the systemtic side effect of the small molecule anticancer drugs, biodegradable drug delivery systems (DDSs) that respond to tumor microenvironment (TME) have attracted significant attention. Herein, a novel redox/pH dual-responsive and biodegradable polyphosphazene (PPZ) nano-prodrugs have been prepared via one-pot crosslinking of vanillin modified DOX (VMD, acid-sensitive) and 4,4′-dihydroxydiphenyl disulfide (HPS, GSH-responsive) with hexachlorocyclotriphosphazene (HCCP). The phenol groups of the as-synthesized VMD and HPS have high nucleophilic substitution activity towards HCCP under base catalyst and afforded PPZ nano-prodrugs, denoted as HCCP-VMD-HPS, with a high drug loading ratio of up to 56.4 %. As expected, the skeleton of the PPZ consisting of imine bonds in VMD and the disulfide bonds in HPS and cyclotriphosphazenes inclined to be decomposed in low pH conditions and high level of GSH environments. The antitumor drug DOX was found to be controlled released in TME conditions (extracellular, pH∼6.8 and endosomes, lysosomes pH∼5.0 with ∼10 mM GSH), rather than neutral physiological conditions (pH 7.4 with ∼20 μM GSH). Moreover, the resulting HCCP-VMD-HPS nano-prodrug have obvious cytotoxicity to cancer cells while a negligible side effect to normal cells. We therefore believe that the prepared redox/pH dual-responsive and biodegradable PPZ DDSs have great potential in various field.