Abstract
To overcome the present limitations in the synthesis of biodegradable triblock copolymers with PLA as central building block, three different reactional mechanisms (coordination-insertion, anionic and cationic) have been involved, while employing the transition from organometallic to organic catalysis. Even though activated chain-end mechanism with stannous octanoate is well known for the successful ROP catalytic reactivity, the synthesis of PLA based triblock copolymers according to this route revealed not negligible transesterification reactions. In the same way, the activated chain-end mechanism through nucleophilic activation (TBD) presented either no reactivity or weak control over the anionic polymerization process. Herein, we therefore propose an activated monomer mechanism as general and simple route for obtaining controlled PTMC-b-PDLLA-b-PTMC and PCL-b-PDLLA-b-PCL triblock copolymers by using cationic organocatalysis (MSA). 1H, 13C NMR and DOSY-NMR spectra confirmed the well-controlled polymer architecture of the B-A-B triblock copolymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.