The waterjet propulsion system is a marine propulsion device prevalently used on contemporary high-speed vessels. The performance of a waterjet propulsion system is considerably affected by the nozzle. In this study, the influences of the shape and the outlet area of a waterjet propulsion system on the efficiency of the propulsion system is investigated using the computational fluid dynamics method. A total of 10 different nozzle designs, including cylindrical and conical nozzles with 5 different outlet areas, are analyzed in terms of nozzle efficiency and overall efficiency, and the possible reasons and explanations behind the variations of the nozzle efficiency and the overall efficiency are proposed in this study. The simulated results indicate that the conical nozzles consistently have higher nozzle efficiency than the cylindrical nozzles, and the maximum nozzle efficiency occurs in the conical nozzle with an outlet area of 60% of the inlet duct area. The abrupt change in the flow direction at the transition between the guide vane section and the nozzle, as well as the skin friction on the nozzle wall, are predominant factors affecting the nozzle efficiency. The waterjet propulsion units equipped with conical nozzles generally have higher overall efficiency than their counterparts equipped with cylindrical nozzles, while the maximum overall efficiency occurs in both the cylindrical nozzle with an outlet area of 50% of the inlet duct area and the conical nozzle with an outlet area of 60% of the inlet duct area. The loss of mechanical energy due to viscosity and turbulence in a propulsion unit is the major source of energy loss, while the kinetic energy carried by the exit flow is also a considerable factor affecting the overall efficiencies of the propulsion units equipped with conical nozzles with relatively large outlet areas.
Read full abstract