In this paper, we have extended the operational matrix method for approximating the solution of the fractional-order two-dimensional elliptic partial differential equations (FPDEs) under nonlocal boundary conditions. We use a general Legendre polynomials basis and construct some new operational matrices of fractional order operations. These matrices are used to convert a sample nonlocal heat conduction phenomenon of fractional order to a structure of easily solvable algebraic equations. The solution of the algebraic structure is then used to approximate a solution of the heat conduction phenomena. The proposed method is applied to some test problems. The obtained results are compared with the available data in the literature and are found in good agreement.Dedicated to my father Mr. Sher Mumtaz, (1955-2021), who gave me the basic knowledege of mathematics.
Read full abstract