Abstract

In this paper we present new exact results for single fully directed walks and fully directed vesicles near an attractive wall. This involves a novel method of solution for these types of problems. The major advantage of this method is that it, unlike many other single-walker methods, generalizes to an arbitrary number of walkers. The method of solution involves solving a set of partial difference equations with a Bethe Ansatz. The solution is expressed as a “constant-term” formula which evaluates to sums of products of binomial coefficients. The vesicle critical temperature is found at which a binding transition takes place, and the asymptotic forms of the associated partition functions are found to have three different entropic exponents depending on whether the temperature is above, below, or at its critical value. The expected number of monomers adsorbed onto the surface is found to become proportional to the vesicle length at temperatures below critical. Scaling functions near the critical point are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.