Multiple ecological drivers, along with forest age, determine the species composition of boreal forest ecosystems. However, the role of age in successional changes in forests cannot be understood without taking site conditions, the disturbance regime and forest structure into account. In this study, we ask two research questions: 1. What is the relationship between forest age and overall species composition in older near-natural spruce forests, i.e. forests of age beyond harvest maturity? 2. Do species associated with different forest habitats respond similarly to variation in forest age? Data were collected in 257 Norway spruce dominated 0.25 ha plots from three study areas in Southeastern and Central Norway. Species inventories were conducted for lichens and bryophytes on trees and rocks, vascular plants on the forest floor, and for deadwood-associated bryophytes and polypore fungi. Although NMDS ordination analyses of the total species composition identified a main axis related to the age of the oldest trees in two of the study areas, variation partitioning analyses showed that age explained a small fraction of variation of the species composition compared to site conditions, logging history, forest structure, and differences between the sites in all habitats. The unique variation explained by forest age species was, however, significant for all habitats. The fraction of variation in species composition explained by forest age was the largest for lichens and bryophytes on trees, and for deadwood-associated bryophytes and polypore fungi. Our results suggest that practical mapping of near-natural forests for management purposes inventories should include site conditions, forest structure and between site differences in addition to forest age.