Abstract Tropical cyclones (TCs) accompanied by an upper-tropospheric cold low (CL) can experience unusual tracks. Idealized simulations resembling observed scenarios are designed in this study to investigate the impacts of a CL on TC tracks. The sensitivity of the TC motion to its location relative to the CL is examined. The results show that a TC follows a counterclockwise semicircle track if initially located east of a CL, while a TC experiences a small southward-looping track, followed by a sudden northward turn if initially located west of a CL. A TC on the west side experiences opposing CL and β steering, while they act in the same direction when a TC is on the east side of CL. The steering flow analyses show that the steering vector is dominated by upper-level flow induced by the CL at an early stage. The influence of CL extends downward and contributes to the lower-tropospheric asymmetric flow pattern of TC. As these two systems approach, the TC divergent outflow erodes the CL. The CL circulation is deformed and eventually merged with the TC when they are close. Since the erosion of CL, the TC motion is primarily related to β gyres at a later stage. The sensitivity of TC motion to the CL depth is also examined. TCs located west of a CL experience a westward track if the CL is shallow. In contrast, TCs initially located east of a CL all take a smooth track irrespective of the CL depth, and the CL depth mainly influences the track curvature and the TC translation speed. Significance Statement The purpose of this study is to better understand how an upper-tropospheric cold low affects the motion of a nearby tropical cyclone. Our findings highlight distinct track patterns based on the relative positions of the tropical cyclone and the cold low. When the tropical cyclone is located on the east side of a cold low, a mutual rotation occurs, leading to a counterclockwise semicircle track of tropical cyclone. Conversely, if the tropical cyclone is located to the west side of a cold low, the cold low approaches and captures it, resulting in an abrupt northward turn when the cold low is eroded by the tropical cyclone. These insights improve the predictability of tropical cyclones in the vicinity of cold lows.
Read full abstract