Coastal forests in the eastern United States are increasingly threatened by hurricanes; however, monitoring their initial impacts and subsequent recovery is challenging across scales. Understanding disturbance impacts and responses is essential for sustainable forest management, biodiversity conservation, and climate change adaptation. Using Sentinel-2 imagery, we calculated the annual Normalized Difference Vegetation Index change (∆NDVI) of forests before and after Hurricane Michael (HM) in Florida to determine how different forest use types were impacted, including the initial wind damage in 2018 and subsequent recovery or reactive management for two focal areas located near and far from the coast. We used detailed parcel data to define forest use types and characterized multi-year impacts using sampling and k-means clustering. We analyzed five years of timberland logging activity up to the fall of 2023 to identify changes in logging rates that may be attributable to post-hurricane salvage efforts. We found uniform impacts across forest use types near the coast, where winds were the most intense but differences inland. Forest use types showed a wide range of multi-year responses. Urban forests had the fastest 3-year recovery, and the timberland response was delayed, apparently due to salvage logging that increased post-hurricane, peaked in 2021–2022, and returned to the pre-hurricane rate by 2023. The initial and secondary consequences of HM on forests were complex, as they varied across local and landscape gradients. These insights reveal the importance of considering forest use types to understand the resilience of coastal forests in the face of potentially increasing hurricane activity.