We theoretically investigate the dynamics, bifurcation structure, and stability of localized states in Kerr cavities driven at the pure fourth-order dispersion point. Both the normal and anomalous group velocity dispersion regimes are analyzed, highlighting the main differences from the standard second-order dispersion case. In the anomalous regime, single and multi-peak localized states exist and are stable over a much wider region of the parameter space. In the normal dispersion regime, stable narrow bright solitons exist. Some of our findings can be understood using a new, to the best of our knowledge, scenario reported here for the spatial eigenvalues, which imposes oscillatory tails to all localized states.
Read full abstract